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[1] We address an ongoing debate regarding the geographic
distribution of interannual variability in ocean - atmosphere
carbon exchange. We find that, for 1983–1998, both novel
high-resolution atmospheric inversion calculations and
global ocean biogeochemical models place the primary
source of global CO2 air-sea flux variability in the Pacific
Ocean. In the model considered here, this variability is
clearly associated with the El Niño/Southern Oscillation
cycle. Both methods also indicate that the Southern Ocean is
the second-largest source of air-sea CO2 flux variability, and
that variability is small throughout the Atlantic, including the
North Atlantic, in contrast to previous studies. INDEX
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1. Introduction

[2] Inversions of atmospheric data and ocean biogeo-
chemical models have been shown to be in approximate
agreement as to the amplitude of interannual variability in
air-sea CO2 exchange (extremes of ±0.5 PgC/yr) [LeQuéré
et al., 2003], but have differed regarding the geographic
distribution of this variability [McKinley et al., 2004;
LeQuéré et al., 2003; P. Peylin et al., Interannual CO2

fluxes as deduced by inverse modeling of atmospheric CO2

and by models of the ocean and the land carbon cycle,
submitted to Global Biogeochemical Cycles, 2004, herein-
after referred to as Peylin et al., submitted manuscript,
2004]. Specifically, the importance of the middle and high
latitudes to the global air-sea CO2 flux variability is an issue
of current debate [McKinley et al., 2004; Gruber et al.,
2002; Peylin et al., submitted manuscript, 2004]. While
ocean models find that the Equatorial Pacific dominates the
global ocean flux variability, the inversion of Bousquet et al.
[2000], as discussed by Peylin et al. (submitted manuscript,
2004), suggests that the Northern middle and high latitudes
are significant to the global oceanic flux variability.

LeQuéré et al. [2003] also indicate that the 3 inversions
they consider disagree as to the geographic locations of the
greatest air-sea CO2 flux variability. The role of the North
Atlantic in the global air-sea CO2 flux variability has
recently received particular attention. Gruber et al. [2002]
extrapolate air-sea flux variability calculated from observed
data at Bermuda for 1984 to 2000 and find that the pattern
and magnitude of this estimate compares well to the North
Atlantic CO2 flux variability estimate from the inversion of
Bousquet et al. [2000]. A relatively large flux variability
from the region, with interannual extremes of ±0.3 PgC/yr,
is suggested. However, ocean modeling studies predict that
the North Atlantic CO2 flux has a much smaller variability
(McKinley et al. [2004] find extremes of ±0.07 PgC/yr), and
that the Equatorial Pacific dominates the global ocean flux
variability [McKinley et al., 2004; Obata and Kitamura,
2003; LeQuéré et al., 2000]. Though they strongly disagree
in the North Atlantic, the Bousquet et al. [2000] inversion
and models suggest very similar magnitudes and patterns of
variability in the Equatorial Pacific [McKinley et al., 2004;
Peylin et al., submitted manuscript, 2004]. What drives
these very different regional comparisons?
[3] McKinley et al. [2004] suggest that this may be a

reflection of the specific inversion method used, in conjunc-
tion with the differences in the large-scale coherence in air-
sea flux anomalies at high latitudes compared to the tropics.
While traditional large-region inversions are well-suited
for estimating flux anomalies characterized by basin-scale
correlation lengths, they induce enhanced uncertainty for
regions with shorter correlations. The problem is aggravated
for two reasons. First, studies based on various methods
[LeQuéré et al., 2003; Rödenbeck et al., 2003; Peylin et al.,
submitted manuscript, 2004; P. Tans, personal communica-
tion, 2004] indicate that ocean flux variability is smaller than
land variability. Because atmospheric stations sample both
land and ocean flux signals and inversions conserve mass,
small relative errors in land flux estimates cause large
relative errors in flux estimates in adjacent ocean regions.
Second, the inverse problem of atmospheric transport is
ill-posed: results are very sensitive to inconsistencies
between inverse model and data [Heimann et al., 2004].
Large-region inversions are more prone to these sources of
error.

2. Models

[4] Methodology of the atmospheric inversion is
described in detail by Rödenbeck et al. [2003]. Surface
exchange CO2 fluxes are estimated on the basis of atmo-
spheric CO2 concentration data, measured by NOAA/CMDL
(National Oceanic and Atmospheric Administration/Climate
Monitoring and Diagnostics Laboratory). Using an atmo-
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spheric tracer transport model to link surface fluxes and
atmospheric concentrations, the inversion technique deter-
mines those fluxes that give the best match between modeled
and observed concentrations. The transport model (the TM3
offline atmospheric tracer transport model [Heimann and
Körner, 2003] with resolution �4� � 5� and 19 vertical
levels), is driven by reanalyzed meteorological data from the
National Center for Environmental Prediction (NCEP) re-
analysis which, in contrast to previous published inversions,
vary interannually. In comparison to previous inversion
calculations, fluxes are estimated on amuch higher resolution
grid (�8� � 10�) to avoid aggregation errors arising other-
wise from flux estimation on large regions with predefined
internal structure. To stabilize the inverse calculations, a
priori information on fluxes and their correlation structure
is imposed in a Bayesian framework. Global annual mean
a priori flux uncertainties of 1.0 PgC/yr for oceans and
2.7 PgC/yr for land regions are spatially distributed according
to the flux estimates of Takahashi et al. [1999] for oceans and
predictions of the LPJ land ecosystem model of S. Sitch et al.
(unpublished manuscript) as cited by Sitch [2000] for land.
The a priori information is the same each year such that any
interannual variations in the flux estimates are driven only by
the atmospheric data and the winds. As the spatial resolution
of information is set by the data density, only fluxes recom-
bined over correspondingly large areas are meaningful and
will be used in the comparison here.
[5] As done by Rödenbeck et al. [2003], we present

multiple inversion results, derived from runs of different time
periods with decreasing lengths corresponding to an increas-
ing number of available observation sites. Sites are selected
so that data records span the complete period of the respective
calculation. This is done in order to avoid spurious interan-
nual variability. The runs with 11, 16, 19 and 26 sites, when
smoothed, are valid for the periods 1983–2000, 1987–2000,
1991–2000 and 1994–2000, respectively.

[6] The biogeochemical ocean model is an offline version
of the MITgcm [Marshall et al., 1997; McKinley et al.,
2004]. Resolution is 1� in longitude and varies from 0.3�
latitudinal resolution in the tropics to 1� at high latitudes.
There are 47 vertical levels. The biogeochemical model is
forced with 10 day-average output from the physical model
which was forced with 12 hourly winds and heat and
freshwater fluxes from the NCEP reanalysis for the period
1980–1998. Tracers are total phosphorus (P), O2, and
dissolved inorganic carbon. A simplified parameterization
for particle export is used where light and nutrient limitation
are explicit and other controls on biological export are
grouped into a parameter chosen to maintain the nutrient
climatology on the basin-scale. Net freshwater fluxes to the
surface layer are used to drive a dilution, or virtual flux, of
tracers. Both gas exchange and export production are
reduced proportional to sea ice cover. The offline biogeo-
chemical model is run only in the upper ocean (0–1265 m),
and tracers relax to climatological concentrations over the
three deepest layers (965–1265 m). Model results presented
here are detrended to compensate for model drift.

3. Results

[7] In Figure 1, we compare model and inversion results
for flux anomalies over 11 ocean regions as defined in
the TransCom3 project [Gurney et al., 2002]. Magnitudes of
the variations are similar between the two methods in all
regions except in the Indian Ocean. This variability may be
related to changes in the sampling location and procedures
at the Seychelles station prior to July 1996 (T. Conway,
personal communication, 2004). In the Pacific regions, there
is a relatively large variability (extremes up to ±0.4 PgC/yr).
In the Southern Ocean, variability has extremes of
±0.2 PgC/yr. In all Atlantic regions, variability is small
(extremes <0.1 PgC/yr).
[8] Though the amplitudes of the variability in these

regions compare reasonably well, the patterns of temporal
variability generally do not. This is not surprising from the
inversion, given the sparse spatial density of the data which
tends to allocate flux variability near station locations.
When regions are aggregated, evidence of agreement
emerges.
[9] In Figure 2, we present time-series aggregated over

the globe and over the four Pacific regions. In Table 1, we
present correlation analysis of model results, the inversion

Figure 1. Regional comparison of model (black) to
inversion (11-station (yellow), 16-station (red), 19-station
(blue), and 26-station (green)) anomaly results. For clarity,
model results are once-smoothed, and inversion results are
twice-smoothed over 12 months. Gray regions are El Niño
periods (when SST in the Niño 3.4 region is greater that
0.4�C). Positive fluxes are to the atmosphere.

Figure 2. Comparison of Global (thick) and Pacific
(thin) flux variability time-series of the 11-station (yellow),
16-station (red), 19-station (blue) inversions of Rödenbeck
et al. [2003] and the ocean model (black). Model results are
once-smoothed, and inversion results are twice-smoothed
over 12 months. Gray regions are El Niño periods as
defined in Figure 1.
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of Rödenbeck et al. [2003] and an alternate inversion where
the Seychelles station is excluded for the 16 and 19-station
inversions. Removal of Seychelles from the inversion
eliminates the large variability in the Indian Ocean and
surrounding regions seen in Figure 1, particularly in 1995–
1996. We do not consider the 26-station inversion result
further because it allows for only 4 years of overlap with the
model result. In Table 2, we present the percent of the global
variance described by the Pacific, Southern Ocean, and
North Atlantic for the inversions and the model.
[10] Figure 2 and Tables 1 and 2 show us that in both the

model and the inversion, the globally integrated air-sea CO2

flux variability is clearly driven from the Pacific. While the
Pacific explains 60% or more of the global variance, the
Southern Ocean explains 4.5 to 9.2% and the North Atlantic
about 0.72 to 7.1% (Table 2). Table 1 shows that if

Seychelles is not included in the inversion, correlations
between the global time-series and the Pacific time-series
are 0.91 to 0.93. With Seychelles, correlations are still high
(0.69 to 0.79). Correlations are 0.92 to 0.93 between the
model’s Pacific and global timeseries.
[11] Variability in the modeled Pacific flux is highly

correlated with the Southern Oscillation Index (SOI) over
all three time periods (Table 1). Though the inversions
clearly indicate dominance of the Pacific to the global air-
sea flux variability, the inversion time-series do not exhibit
large correlation with the SOI, i.e., a clear ENSO signal is
not found. The correlation with ENSO is mainly spoiled by
the large positive anomaly in 1994 in the inversion results,
for which we have not been able to determine a clear cause.
In the inversion of Bousquet et al. [2000], equatorial Pacific
CO2 efflux rises and falls with La Niña and El Niño,
respectively, however flux correlations with the SOI are
not reported. For both this model and these inversions,
correlations increase when the flux leads by 2–5 months, in
agreement with Rayner et al. [1999].

4. Discussion

[12] Why is it that the Pacific Ocean dominates the global
air-sea CO2 flux variability? Observational work in the
Equatorial Pacific [Feely et al., 2002] and analysis of this
and other models [McKinley et al., 2004; Obata and
Kitamura, 2003; LeQuéré et al., 2000, 2003] has illustrated
the enormous impact of ENSO on air-sea CO2 fluxes.
Across the equatorial Pacific, changes in the depth of the
thermocline, upwelling rates, and the longitudinal displace-
ment of the western Pacific warm pool drive surface DpCO2

shifts; and changes in surface wind speeds alter air-sea
exchange. With ENSO, the changes are coordinated over a
large portion of the ocean, and substantial net air-sea CO2

anomalies occur.
[13] These changes can be seen as a large-scale modula-

tion of the physical processes responsible for the large net
CO2 efflux in the Equatorial Pacific. Why is it then that in
the North Atlantic, where the net CO2 uptake is large,
physical modulation of the driving physical processes does
not appear to result in a large air-sea flux interannual
variability? Detailed analysis of this model shows that
North Atlantic variability is small because convectively-

Table 1. Timeseries Correlationsabc

1983–1998d 1987–1998e 1991–1998f

Inversion, Rödenbeck et al. [2003]
Global to Model Global 0.23 0.34 0.19

(0.95) (0.98) (<0.90)
Pacific to Model Pacific 0.12 0.50 0.40

(<0.90) (0.99) (0.98)
Pacific to Global 0.91 0.69 0.79

(0.99) (0.99) (0.99)
Pacific to SOI �0.04 0.27 0.10

(<0.90) (0.95) (<0.90)
max Pacific to SOIg 0.27[+5] 0.34[+2] 0.22[+4]

(0.95) (0.98) (<0.90)

Alternate Inversion Without Seychelles
Global to Model Global - 0.36 0.16

- (0.98) (<0.90)
Pacific to Model Pacific - 0.40 0.16

- (0.99) (<0.90)
Pacific to Global - 0.92 0.93

- (0.99) (0.99)
Pacific to SOI - 0.20 �0.06

- (<0.90) (<0.90)
max Pacific to SOI - 0.30[+4] 0.14[+6]

- (0.95) (<0.90)

Model
Pacific to Global 0.93 0.93 0.92

(0.99) (0.99) (0.99)
Pacific to SOI 0.75 0.73 0.64

(0.99) (0.99) (0.99)
max Pacific to SOI 0.80[+2] 0.78[+3] 0.76[+3]

(0.99) (0.99) (0.99)
aInversion and model results are averaged to 4 month means such that the

resulting time-series are in good approximation white noise processes,
judged with help of the test of Tong [1990, p. 324]. We use 4 month
averages because application of the test over increasing number of months
levels off at 4 months.

bIn parenthesis, we list the outcome of a significance test based on the
statistic t ¼

ffiffiffiffiffiffiffiffiffiffiffi

n� 2
p

* Rn
ffiffiffiffiffiffiffiffi

1�R2
n

p where Rn is the correlation coefficient,

calculated using 4 monthly averaged time-series, and n is the sample size,

noted below.
cBold results are those that pass three criteria: (1) correlation �0.64,

(2) correlation highly significant and (3) autocorrelations of both 4 monthly
average time-series negligible.

d11-station, yellow in Figures 1 and 2, n = 51. Seychelles not used by
Rödenbeck et al. [2003], so there is no alternate result.

e16-station, red in Figures 1 and 2, n = 39.
f19-station, blue in Figures 1 and 2, n = 27.
gMaximum Pacific correlation with the Southern Oscillation Index (SOI)

found when the flux leads by the number of months noted in square
brackets.

Table 2. Regional Percent of Global Variancea

1983–1998 1987–1998 1991–1998

Inversion, Rödenbeck et al. [2003]
Pacific 60% 77% 121%
Southern Ocean 6.3% 4.5% 6.4%
North Atlantic 0.80% 0.72% 7.1%

Alternate Inversion Without Seychelles
Pacific - 65% 61%
Southern Ocean - 5.5% 9.2%
North Atlantic - 0.80% 6.8%

Model
Pacific 85% 85% 94%
Southern Ocean 5.2% 6.0% 4.5%
North Atlantic 1.1% 1.2% 1.6%

aPercent of variance = 100 � (sregion2 /sglobal
2 ). Cancellation of regional

anomalies can cause sregion
2 > sglobal

2 and thus the percent variance to be
�100%.
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produced dissolved inorganic carbon anomalies are damped
by biological carbon export before substantial air-sea flux
anomalies can occur. Heterogeneity of the variability in the
driving processes also promotes cancellation when summed
to the regional or basin scale [McKinley et al., 2004].
Similar mechanisms may be at play in the Southern Ocean,
though more study is clearly needed.
[14] Why is it that the Rödenbeck et al. [2003] inversion,

unlike previous inverse calculations, agrees with the ocean
model predictions? The spatially highly resolving inversion
methodology used here limits the region of influence of a
station to a smaller region than the large, basin-scale regions
used in traditional approaches such as TransCom3. It
therefore is able to limit errors caused by biases in the a
priori prescribed large-scale flux patterns. In the Rödenbeck
et al. [2003] approach, a priori correlations are applied to
prevent gridscale noise, but this is a much softer and
homogenous constraint than fixed regional structures. The
downside to this approach, as already mentioned, is that
it tends to allocate variability closer to the observation
stations. Our results suggest that for areas with high spatial
heterogeneity in the flux variability, such as the North
Atlantic, this new inversion methodology is more appropri-
ate than traditional approaches [Bousquet et al., 2000;
Gurney et al., 2002]. As shown by sensitivity testing
[Rödenbeck et al., 2003], region size is indeed an important
parameter affecting the flux estimates. For the same reason,
the new approach is expected to be superior in allocating
variability to different oceans like the Pacific and the
Atlantic, and this is supported by the model-inversion
comparison presented in this paper.

5. Conclusions

[15] We find that a novel, high-resolution atmospheric
data inversion agrees with ocean biogeochemical models as
to the dominance of the Pacific Ocean to the global air-sea
CO2 flux variability. Both methodologies also indicate that
variability coming from the Southern Ocean is of secondary
importance, and that variability throughout the Atlantic is
small.
[16] These comparisons illustrate that important progress

is being made in our capacity to observationally constrain
and model the driving processes of air-sea carbon exchange
variability. The inversions and model shown here do
not, however, formally agree as to the temporal patterns
of air-sea CO2 flux variability at either the local or global
scale. Future efforts need to focus on increasing data
density, refining inversion methodology, and improving
ocean biogeochemical models.
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